Evidence for two active branches for electron transfer in photosystem I.
نویسندگان
چکیده
All photosynthetic reaction centers share a common structural theme. Two related, integral membrane polypeptides sequester electron transfer cofactors into two quasi-symmetrical branches, each of which incorporates a quinone. In type II reaction centers [photosystem (PS) II and proteobacterial reaction centers], electron transfer proceeds down only one of the branches, and the mobile quinone on the other branch is used as a terminal acceptor. PS I uses iron-sulfur clusters as terminal acceptors, and the quinone serves only as an intermediary in electron transfer. Much effort has been devoted to understanding the unidirectionality of electron transport in type II reaction centers, and it was widely thought that PS I would share this feature. We have tested this idea by examining in vivo kinetics of electron transfer from the quinone in mutant PS I reaction centers. This transfer is associated with two kinetic components, and we show that mutation of a residue near the quinone in one branch specifically affects the faster component, while the corresponding mutation in the other branch specifically affects the slower component. We conclude that both electron transfer branches in PS I are active.
منابع مشابه
Redox potential of quinones in both electron transfer branches of photosystem I.
The redox potentials of the two electron transfer (ET) active quinones in the central part of photosystem I (PSI) were determined by evaluating the electrostatic energies from the solution of the Poisson-Boltzmann equation based on the crystal structure. The calculated redox potentials are -531 mV for A1A and -686 mV for A1B. From these results we conclude the following. (i) Both branches are a...
متن کاملA Fourier transform infrared absorption difference spectrum associated with the reduction of A1 in photosystem I: are both phylloquinones involved in electron transfer?
Photoaccumulated Fourier transform infrared difference spectra associated with P700(+) and P700(+)A(1)(-) formation have been obtained using purified photosystem I particles from Synechocystis sp. PCC 6803. From these spectra, a difference spectrum associated with phylloquinone reduction (A(1)(-) - A(1)) has been calculated. Infrared absorption changes associated with both the loss of the groun...
متن کاملDynamic protein conformations preferentially drive energy transfer along the active chain of the photosystem II reaction centre
One longstanding puzzle concerning photosystem II, a core component of photosynthesis, is that only one of the two symmetric branches in its reaction centre is active in electron transfer. To investigate the effect of the photosystem II environment on the preferential selection of the energy transfer pathway (a prerequisite for electron transfer), we have constructed an exciton model via extens...
متن کاملInvestigation of the Stationary and Transient A1·− Radical in Trp → Phe Mutants of Photosystem I
Photosystem I (PS I) contains two symmetric branches of electron transfer cofactors. In both the A- and B-branches, the phylloquinone in the A(1) site is pi-stacked with a tryptophan residue and is H-bonded to the backbone nitrogen of a leucine residue. In this work, we use optical and electron paramagnetic resonance (EPR) spectroscopies to investigate cyanobacterial PS I complexes, where these...
متن کاملAsymmetric electron transfer in cyanobacterial Photosystem I: charge separation and secondary electron transfer dynamics of mutations near the primary electron acceptor A0.
Point mutations were introduced near the primary electron acceptor sites assigned to A0 in both the PsaA and PsaB branches of Photosystem I in the cyanobacterium Synechocystis sp. PCC 6803. The residues Met688PsaA and Met668PsaB, which provide the axial ligands to the Mg2+ of the eC-A3 and eC-B3 chlorophylls, were changed to leucine and asparagine (chlorophyll notation follows Jordan et al., 20...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 8 شماره
صفحات -
تاریخ انتشار 2001